CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2012	9702	21	
(a) (i)		eleration = change in velocity / time (taken) acceleration = rate of change of velocity		B1	[
(ii)	a bo	a body continues at constant velocity unless acted on by a resultant force		B1	[
(b) (i)	distance is represented by the area under graph distance = $\frac{1}{2}$ × 29.5 × 3 = 44.3 m (accept 43.5 m for 29 to 45 m for 30)		C1 A1	[
(ii)	resultant force = weight – frictional force frictional force increases with speed at start frictional force = 0 / at end weight = frictional force		B1 B1 B1	[
(iii)	1.	frictional force increases		B1	[
	2.	frictional force (constant) and then decreases		B1	ı
(iv)	1.	acceleration = $(v_2 - v_1) / t = (20 - 50) / (17 - 15)$ = $(-) 15 \mathrm{m s}^{-2}$		C1 A1	
	2.	W - F = ma $W = 95 \times 9.81 (= 932)$ $F = (95 \times 15) + 932 = 2400 (2360) (2357) N$		C1 C1 A1	
(a) res	istan	ce = potential difference / current		B1	
(b) (i)	volt	tal wire in series with power supply and ammeter meter in parallel with metal wire	ngoment	B1 B1	
		ostat in series with power supply or potential divider arra ariable power supply	ngement	B1	
(ii)	1.	intercept on graph		B1	
	2.	scatter of readings about the best fit line		B1	
(iii)	use	rection for zero error explained of V and corrected I values from graph stance = V/I = 22.(2) Ω [e.g. 4.0 / 0.18]		B1 C1 A1	I
(c) R=	= 6.8 / 0.64 = 10.625			C1	
	= ((= 1	%V + %I 0.1 / 6.8) × 100 + (0.01 / 0.64) × 100 .47% + 1.56%		C1	
ΔR		$0.0303 \times 10.625 = 0.32 \Omega$ $0.6 \pm 0.3 \Omega$		A1	

	Page 3		3	Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2012	9702	21	
3	(a)	pre	ssure	e = force / area		B1	[1]
	(b)	mo	molecules collide with object / surface and rebound molecules have change in momentum hence force acts fewer molecules per unit volume on top of mountain / temperature is less		re is less	B1 B1	
		hence less pressure				B1 A0	[3]
	(c)	(i)		m / V		C1	
				$V \rho g = 0.25 \times 0.45 \times 9.81 \times 13600$ 15000 (15009) N		C1 A1	[3]
		(ii)	p =	W/A (or using $p = \rho gh$) = 15009 / 0.45 = 3.3 × 10 ⁴ Pa		A1	[1]
	((iii)	pres	sure will be greater due to the air pressure (acting on th	e surface of the	liquid) B1	[1]
4	(a)			ass through the elements / gaps / slits in the grating nto geometric shadow		M1 A1	[2]
	(b)	(i)		displacements add to give resultant displacement each wavelength travels the same path difference or are hence produce a maximum	e in phase	B1 B1 A0	[2]
				to obtain a maximum the path difference must be λ or p 360° / 2π rad λ of red and blue are different hence maxima at different angles / positions	hase difference	B1 B1 A0	[2]
		(ii)		$\frac{d}{\sin \theta}$ sin 61° / (2 × 625 × 10 ⁻⁹) = 7.0 × 10 ⁵		C1 A1	[2]
	((iii)	n = '	= 2 × 625 is a constant (1250) 1 $\rightarrow \lambda$ = 1250 outside visible		C1	
			n = 4	$3 \rightarrow \lambda$ = 417 in visible $4 \rightarrow \lambda$ = 312.5 outside visible 420 nm		A1	[2]
5	(a)	whe		e load is removed then the wire / body object does not re	eturn to its origir	nal shape B1	/ [1]
	(b)	(i)	stres	ss = force / area 220 × 10 ⁶ × 1.54 × 10 ⁻⁶ = 340 (338.8)N		C1 A1	[2]
		(ii)	E = e = ($(F \times l) / (A \times e)$ (90 × 10 ⁶) × 1.75 / (1.2 × 10 ¹¹) = 1.31 × 10 ⁻³ m		C1 A1	[2]
	(c)	the	stres	s is no longer proportional to the extension		B1	[1]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	21

- **6 (a)** 92 protons in the nucleus and 92 electrons around nucleus B1 143 neutrons (in the nucleus) B1 [2]
 - (b) (i) α -particle travels short distance in air B1 [1]
 - (ii) very small proportion in backwards direction / large angles
 majority pass through with no /small deflections
 either most of mass is in very small volume (nucleus) and is charged or most of atom is
 empty space

 B1
 [3]
 - (c) I = Q/t C1 $n/t = (1.5 \times 10^{-12})/(2 \times 1.6 \times 10^{-19})$ C1 $n/t = 4.7 \times 10^6 \,\text{s}^{-1}$ A1 [3]